Modified Particle Swarm Optimization with Time Varying Acceleration Coefficients for Economic Load Dispatch with Generator Constraints
نویسنده
چکیده
This paper proposes a Modified Particle Swarm Optimization with Time Varying Acceleration Coefficients (MPSO-TVAC) for solving economic load dispatch (ELD) problem. Due to prohibited operating zones (POZ) and ramp rate limits of the practical generators, the ELD problems become nonlinear and nonconvex optimization problem. Furthermore, the ELD problem may be more complicated if transmission losses are considered. Particle swarm optimization (PSO) is one of the famous heuristic methods for solving nonconvex problems. However, this method may suffer to trap at local minima especially for multimodal problem. To improve the solution quality and robustness of PSO algorithm, a new best neighbour particle called ‘rbest’ is proposed. The rbest provides extra information for each particle that is randomly selected from other best particles in order to diversify the movement of particle and avoid premature convergence. The effectiveness of MPSO-TVAC algorithm is tested on different power systems with POZ, ramp-rate limits and transmission loss constraints. To validate the performances of the proposed algorithm, comparative studies have been carried out in terms of convergence characteristic, solution quality, computation time and robustness. Simulation results found that the proposed MPSO-TVAC algorithm has good solution quality and more robust than other methods reported in previous work.
منابع مشابه
Particle Swarm Optimization Technique with Time Varying Acceleration Coefficients for Load Dispatch Problem
Economic load dispatch is a non linear optimization problem which is of great importance in power systems . While analytical methods suffer from slow conversion and curse of dimensionality particle swarm optimization can be an efficient alternative to solve large scale non linear optimization problem.A lot of advancements have been done to modify this algorithm. This paper presents an overview ...
متن کاملEconomic Dispatch of Power Systems using Hybrid Particle Swarm Algorithm based on Sin-Cos Accleration Coefficient
Abstract: Distribution economic burden in power system is one of the important and essential issues in power plant production planning. This thesis presents the economic burden for generating power plants with smooth and uneven functions and considering the constraints of the power plant (steam valve, forbidden areas, with and without transmission losses) in a multi-generator power system. The ...
متن کاملHybrid Particle Swarm Optimization for Solving Multi-area Economic Dispatch Problem
We consider the Multi-Area Economic Dispatch problem (MAEDP) in deregulated power system environment for practical multi-area cases with tie line constraints. Our objective is to generate allocation to the power generators in such a manner that the total fuel cost is minimized while all operating constraints are satisfied. This problem is NP-hard. In this paper, we propose Hybrid Particle Swarm...
متن کاملModified particle swarm optimization for economic-emission load dispatch of power system operation
This paper proposes a modified particle swarm optimization considering time-varying acceleration coefficients for the economic-emission load dispatch (EELD) problem. The new adaptive parameter is introduced to update the particle movements through the modification of the velocity equation of the classical particle swarm optimization (PSO) algorithm. The idea is to enhance the performance and ro...
متن کاملParticle Swarm Optimization with Smart Inertia Factor for Combined Heat and Power Economic Dispatch
In this paper particle swarm optimization with smart inertia factor (PSO-SIF) algorithm is proposed to solve combined heat and power economic dispatch (CHPED) problem. The CHPED problem is one of the most important problems in power systems and is a challenging non-convex and non-linear optimization problem. The aim of solving CHPED problem is to determine optimal heat and power of generating u...
متن کامل